Megacity mobility : integrated urban transport development and management /


Zongzhi Li, Adrian T. Moore, Samuel R. Staley.
Bok Engelsk 2022 · Electronic books.
Medvirkende
Moore, Adrian T., (author.)
Staley, Sam, (author.)
Omfang
1 online resource (255 pages)
Opplysninger
Cover -- Half Title -- Title Page -- Copyright Page -- Dedication -- Table of Contents -- Foreword -- Acknowledgments -- List of abbreviations -- Authors -- 1 Introduction -- 1.1 Urban mobility in a post-COVID pandemic world -- 1.1.1 Definition of mobility -- 1.1.2 People versus freight -- 1.1.3 Economics of mobility -- 1.1.4 Hidden costs of mobility degradation -- 1.2 Challenges of megacity mobility -- 1.2.1 Ever-increasing travel demand -- 1.2.2 Shifting travel patterns -- 1.2.3 The case of China's megacities -- 1.3 Framing the next wave of transportation solutions -- References -- 2 New perspectives of urban transportation decision-making -- 2.1 Framing the megacity mobility challenge -- 2.2 The need for complex and sophisticated transportation systems -- 2.3 Setting a new standard for megacity mobility -- 2.4 Is the hub- and-spoke transportation network design obsolete? -- 2.5 Building resilience using 3D transportation planning -- 2.6 Fundamental elements of megacity mobility -- References -- 3 Travel demand management -- 3.1 Influence of land use on mobility -- 3.2 Physical travel management -- 3.3 Destination location and arrival time management -- 3.4 Travel mode management -- 3.5 Demand leveling management -- 3.6 Departure time and travel route management -- 3.7 Travel lane management -- 3.8 Cases in action -- 3.8.1 Bay Area travel demand leveling program, California -- 3.8.2 Sustainable urban mobility in Stockholm, Sweden -- 3.8.3 Smarter travel choices from better travel information in Reading, Berkshire, UK -- 3.8.4 Urban transportation development and management in Singapore -- References -- 4 Building out 3D highway transportation with flexible capacity -- 4.1 General -- 4.1.1 3D spiderweb transportation networks -- 4.1.2 Multimodal integration -- 4.2 Conventional options of highway capacity expansion.. - 4.2.1 Adding new travel lanes or building new roads -- 4.2.2 Roadway widening -- 4.2.3 Grade separation improvements -- 4.2.4 Case in action: U.S. Interstate 2.0 -- 4.3 Elevated freeways -- 4.3.1 Elevated crosstown expressways -- 4.3.2 Case in action: Tampa Bay crosstown expressway -- 4.4 Transportation tunnels -- 4.4.1 Importance of tunnels -- 4.4.2 Feasibility of tunneling -- 4.4.2.1 Physical feasibility -- 4.4.2.2 Environmental impacts -- 4.4.2.3 Financial feasibility -- 4.4.3 Cases in action -- 4.4.3.1 Paris A86 West tunnels -- 4.4.3.2 Sydney M5 East Freeway tunnels -- 4.4.3.3 Istanbul Bosporus multimodal crossings -- 4.4.3.4 Shanghai Yangtze River Tunnel-Bridge crossing -- 4.4.3.5 Chongqing Jiefangbei underground circle -- 4.5 Redesigning at-grade intersections -- 4.5.1 Unconventional at-grade intersection designs -- 4.5.1.1 Doublewide intersections -- 4.5.1.2 Continuous flow intersections -- 4.5.1.3 Median U-turn intersections -- 4.5.1.4 Super street intersections -- 4.5.2 Unconventional overpass, queue jumper, and interchange designs -- 4.5.2.1 Center-turn overpasses -- 4.5.2.2 Queue jumpers -- 4.5.2.3 Tight diamond interchanges -- 4.5.2.4 Single point interchanges -- 4.5.2.5 Echelon interchanges -- 4.5.2.6 Median U-turn diamond interchanges -- 4.5.3 Cases in action -- 4.5.3.1 Young Circle in Hollywood, Florida -- 4.5.3.2 Lujiazui pedestrian circle/vehicular roundabout in Shanghai, China -- 4.6 Complete streets -- 4.6.1 Basic elements -- 4.6.2 Case in action: complete streets in Saint Paul, Minnesota -- 4.7 Optimal control of signalized intersections -- 4.7.1 General -- 4.7.2 SCOOT adaptive traffic signal control system -- 4.8 New truck route capacity -- 4.8.1 Truckways -- 4.8.2 Case in action: tolled truckways in Georgia -- 4.9 Connected and automated/autonomous vehicles -- 4.9.1 Connected vehicles -- 4.9.2 Automated/autonomous vehicles.. - 4.9.3 Cases in action -- 4.9.3.1 Self-driving cars by Waymo in California -- 4.9.3.2 Autopilot/full self-driving by Tesla in California -- 4.10 Conclusion -- References -- 5 Building out transit and multimodal transportation -- 5.1 Transit capacity provision -- 5.1.1 Transit performance benchmarks -- 5.1.2 Transit network planning and design -- 5.1.3 Transit vehicles -- 5.1.3.1 Bus transit -- 5.1.3.2 Bus rapid transit -- 5.1.3.3 Fixed guideway transit -- 5.1.4 Transit signal priority -- 5.1.4.1 Bus signal priority -- 5.1.4.2 Bus signal priority in SCOOT -- 5.1.5 Cases in action -- 5.1.5.1 Downtown Seattle Transit Tunnel -- 5.1.5.2 Los Angeles Metro Busway system -- 5.1.5.3 Lagos BRT-Lite in Lagos, Nigeria -- 5.1.5.4 Transit priority system in Los Angeles -- 5.2 Ridesharing modes -- 5.2.1 General -- 5.2.2 Case in action: BART integrated carpool to transit access program -- 5.2.3 Case in action: Seattle on demand microtransit -- 5.3 Active transportation and micromobility modes -- 5.3.1 Pedestrian walking facilities -- 5.3.2 Bike facilities -- 5.3.3 Scooter facilities -- 5.4 Multimodal integrated passenger travel -- 5.4.1 General -- 5.4.2 Case in action: multimodal passenger travel in Hong Kong, China -- 5.5 Multimodal freight transportation -- 5.5.1 Freight rails -- 5.5.2 Cargo drones -- 5.5.3 Cases in action -- 5.5.3.1 The CREATE program in Chicago -- 5.5.3.2 Rhaegal heavy-lifting drones -- 5.5.3.3 Amazon's Prime Air -- 5.6 Urban curb spaces as multimodal passenger/freight shared use mobility terminals -- 5.7 Conclusion -- References -- 6 Mobility management for efficient capacity utilization -- 6.1 General -- 6.1.1 Multiple, distinct goals in transportation system management -- 6.1.2 The need for performance-based management -- 6.2 Mobility-centered, performance-based transportation system management -- 6.2.1 General.. - 6.2.2 Mobility performance measures -- 6.3 Measures and strategies for mobility management -- 6.3.1 Managing multimodal travel demand -- 6.3.2 Multimodal integrated, expanded, and flexible transportation capacity -- 6.3.3 Efficient capacity utilization -- 6.4 From reactive to proactive mobility management -- 6.5 Mobility management system -- 6.5.1 Mobility management bundles and user services -- 6.5.1.1 Travel demand and traffic management -- 6.5.1.2 Travel and traffic information dissemination -- 6.5.1.3 Advanced vehicle technologies -- 6.5.1.4 Transit mobility management -- 6.5.1.5 Commercial vehicle mobility management -- 6.5.1.6 Incident and emergency management for more resilient mobility -- 6.5.1.7 Electronic payment -- 6.5.2 Mobility management system architecture -- 6.5.2.1 Logical architecture -- 6.5.2.2 Physical architecture -- 6.5.2.3 Communications -- 6.5.3 Mobility management technologies -- 6.6 Cases in action -- 6.6.1 I-94 corridor ITS deployments in Minnesota -- 6.6.2 I-90 Smart road in Schaumburg, Illinois -- 6.6.3 Spotlight ITS developments in Mainland China -- 6.6.4 Intelligent traffic management system in Hong Kong, China -- References -- 7 Innovative transportation funding and financing -- 7.1 Historical revenue sources -- 7.1.1 Fuel taxes -- 7.1.2 Tolls or fares -- 7.1.3 Weight-distance fees -- 7.1.4 Value capture charges -- 7.1.5 General revenue -- 7.1.6 Parking fees -- 7.1.7 Externality fees -- 7.2 Transportation funding is fraught with tradeoffs -- 7.2.1 General -- 7.2.2 User fees -- 7.3 Principles of sound transportation funding -- 7.4 Price-based revenue generation -- 7.4.1 Pricing to pay for highway infrastructure -- 7.4.2 Pricing for specific facilities -- 7.4.3 Pricing for externalities -- 7.4.3.1 User charges for other externalities -- 7.4.4 Pricing controversies and challenges -- 7.5 Transportation financing.. - 7.5.1 Public financing of mobility -- 7.5.1.1 Debt -- 7.5.1.2 Infrastructure banks -- 7.5.1.3 Asset recycling -- 7.5.2 Public-private partnerships -- 7.5.2.1 Strengths of PPPs -- 7.5.2.2 Risks and challenges of PPPs -- 7.5.2.3 PPPs as a tool -- 7.6 Cases in action -- 7.6.1 PPP for urban highways in Santiago, Chile -- 7.6.2 Land value capture to fund urban metro in Hong Kong, China -- 7.6.3 Congestion charges in London -- References -- 8 Performance-based, mobility-centered transportation budget allocation -- 8.1 General -- 8.2 Mobility-centered, performance-based budget allocation process -- 8.3 Mobility management data needs and database management -- 8.3.1 General requirements -- 8.3.2 Field collected data -- 8.3.3 Predictive traffic data -- 8.3.4 Data sampling methods -- 8.3.5 Data collection techniques -- 8.3.6 Data collection frequency -- 8.3.7 Data quality assurance -- 8.3.8 Data integration and database management -- 8.4 Mobility performance analysis and predictions -- 8.4.1 O-D path travel time estimation -- 8.4.2 Travel time index and travel time buffer index -- 8.5 Mobility improvement needs assessment -- 8.5.1 Mobility improvement needs assessment by travel mode -- 8.5.2 Mobility improvement options -- 8.6 Mobility improvement evaluation -- 8.6.1 Mobility improvement benefits in monetary values -- 8.6.2 Mobility improvement benefits in utility values -- 8.7 Budget allocation for mobility-centered performance improvements -- 8.7.1 Issues -- 8.7.2 Budget allocation methods -- 8.7.3 Tradeoff analysis methods -- 8.7.4 Implementation of prioritized alternatives and feedback of effectiveness -- 8.8 Cases in action -- 8.8.1 Budget allocation practices in U.S. state transportation agencies -- 8.8.2 Illinois tollways' investment decision-making in interdependent capital projects -- 8.9 Issues and challenges -- 8.9.1 Institutional issues.. - 8.9.1.1 Strategic challenges.
Emner
Sjanger
Dewey
ISBN
1-000-51820-5

Bibliotek som har denne