Membrane Engineering in the Circular Economy : Renewable Sources Valorization in Energy and Downstream Processing in Agro-Food Industry.


Adolfo. Iulianelli
Bok Engelsk 2022 · Electronic books.

Omfang
1 online resource (579 pages)
Opplysninger
Front Cover -- Membrane Engineering in the Circular Economy -- Copyright Page -- Contents -- List of contributors -- Preface -- 1 Membrane engineering and renewable energy in the circular economy -- 1 Introduction to the fundamentals of the membrane engineering -- 1.1 Introduction -- 1.2 Pressure-driven membrane processes -- 1.2.1 Microfiltration -- 1.2.2 Ultrafiltration -- 1.2.3 Nanofiltration -- 1.2.4 Reverse osmosis -- 1.2.5 Membrane gas separation -- 1.3 Membrane contactors -- 1.3.1 Membrane distillation -- 1.3.2 Membrane crystallization -- 1.3.3 Membrane emulsification -- 1.3.4 Membrane dryers -- 1.3.5 Membrane condensers -- 1.4 Membrane reactors -- 1.4.1 Inert membrane reactors -- 1.4.2 Catalytic membrane reactors -- 1.5 Membrane bioreactors -- 1.6 Conclusions and future trends -- Nomenclature -- Symbols -- References -- 2 The impact of membrane engineering in the circular economy -- 2.1 Introduction: from linear to circular economy. An historical overview -- 2.2 Membrane engineering today -- 2.2.1 Production systems, separations processes, and membranes -- 2.2.2 Membranes as a key technology for sustainable production -- 2.2.3 The continuing development of membrane engineering -- 2.3 Place and role of membrane engineering in a circular economy -- 2.3.1 Renewable feedstocks -- 2.3.2 Energy sources and requirement -- 2.3.3 Production processes -- 2.3.4 Environmental and safety issues -- 2.3.5 Integrated systems -- 2.4 Challenges and prospects -- 2.4.1 Breakthrough materials performances -- 2.4.2 New membrane modules production technologies -- 2.4.3 Looking for alternative driving forces -- 2.4.4 Toward a revolution in process engineering tools -- 2.5 Conclusion and future trends -- Nomenclature -- References -- 3 The zero-waste economy: from food waste to industry -- 3.1 Introduction.. - 12.3.2.4 The fat (oil) content of tomato pomace -- 12.3.2.5 The mineral (ash) content of tomato pomace -- 12.4 Utilization of tomato pomace toward producing high added value products -- 12.4.1 Production of animal feed -- 12.4.2 Production of various foodstuffs with incorporation of tomato pomace or its components -- 12.4.2.1 Bakery, pasta, and snack products -- 12.4.2.2 Meat products -- 12.4.2.3 Dairy products -- 12.4.2.4 Tomato paste, ketchup, and dietary jam production -- 12.4.2.5 Oil products enriched by tomato pomace bioactives -- 12.4.3 Production of bioactive products by using tomato pomace -- 12.4.3.1 Extraction of lycopene and carotenoids from tomato pomace and its components -- 12.4.3.2 Production of enzymes by using tomato pomace as raw materials -- 12.4.3.3 Production of tomato seed protein and amino acids -- 12.4.3.4 Production of soluble dietary fiber and pectin -- 12.4.3.5 Production of tomato seed oil -- 12.4.3.6 Production of miscellaneous bioactive products -- 12.5 Conclusions and future trends -- Nomenclature -- References -- 3 Case studies -- 13 Advanced membrane-based processes for biogas upgrading -- 13.1 Introduction -- 13.2 Current technologies for biogas purification to biomethane -- 13.2.1 Membranes -- 13.2.2 Physical and chemical absorption -- 13.2.3 Pressure swing adsorption -- 13.3 Membranes for biogas separation -- 13.3.1 Polymeric membranes -- 13.3.2 Zeolite membranes -- 13.3.3 Mixed matrix membranes -- 13.4 Multistage membrane systems for biogas upgrading -- 13.4.1 Performance maps for multistage plant design -- 13.5 Process intensification metrics -- 13.6 Current applications of membranes in biogas upgrading at industrial-scale -- 13.7 Conclusions and future trends -- Acknowledgements -- Nomenclature -- References -- 14 Sustainable and green bio-ethanol purification for biofuel production via membrane engineering.. - 14.1 Introduction.. - 3.2 Circular economy-definitions, aspects, applications, and advantages -- 3.2.1 Circular economy definitions -- 3.2.2 Linear economy versus circular economy: linear economy disadvantages and circular economy benefits -- 3.2.3 Material flows in circular economy -- 3.3 The zero waste target: food lost and waste valorization -- 3.4 Membrane technology to improve circular economy in food industry -- 3.4.1 Membrane processes for the recovery of products with high added value from waste -- 3.4.2 Integrated membrane systems on wastewater fractionation -- 3.4.3 Economic and environmental aspects of the membrane system -- 3.5 Conclusions and future trends -- Nomenclature -- References -- 4 Circular economy in selected wastewater treatment techniques -- 4.1 Introduction -- 4.2 Water situation -- 4.3 Circular economy in the water sector -- 4.4 Applications, benefits, and obstacles to water reuse -- 4.5 Water recovery from wastewater -- 4.6 Energy, fertilizer, and other products from wastewater -- 4.7 Potentialities of membrane desalination technologies for a circular water economy -- 4.8 Conclusions and future trends -- Nomenclature -- References -- 5 Membrane engineering in gas separation -- 5.1 Introduction -- 5.2 Principle of gas separation through membrane -- 5.2.1 Gas separation through porous and dense membrane -- 5.2.2 Gas separation through polymeric membrane system -- 5.2.3 Gas separation through composite membrane system -- 5.2.4 Gas separation through mixed matrix membrane system -- 5.3 Nanomaterials for gas separation -- 5.3.1 Metal-organic framework based membrane -- 5.4 Conclusions and future trends -- Nomenclature -- List of symbols -- Acknowledgments -- References -- 6 Hydrogen and renewable energy: the role of membrane reactor technology -- 6.1 Introduction to membrane reactors -- 6.1.1 Membrane type -- 6.1.1.1 Membrane nature.. - 6.1.1.2 Membrane housing -- 6.1.1.3 Membrane separation regime -- 6.1.2 Membrane reactor configurations -- 6.1.3 Comparison of membrane reactor and conventional reactor -- 6.2 Hydrogen production using membrane reactors through the utilization of renewable resources -- 6.3 Synthetic fuel production using membrane reactors through the utilization of renewable resources -- 6.4 Conclusions and future trends -- Nomenclature -- Acknowledgments -- References -- 2 Biorefinery by membrane separation technology -- 7 Renewable sources to biorefineries, biomass conversion, and membrane technology -- 7.1 Introduction -- 7.2 Basis concepts of biorefineries -- 7.2.1 Renewable and waste materials as new feedstocks -- 7.2.2 Conversion technologies in biorefineries -- 7.2.3 Optimization and efficiency -- 7.3 Membrane technology in biorefineries -- 7.3.1 Synthetic membranes -- 7.3.1.1 Organic membranes -- 7.3.1.2 Inorganic membranes -- 7.3.2 Catalytic membrane reactors -- 7.3.2.1 Inorganic membrane reactors -- 7.4 Membrane bioreactors (MBR) -- 7.5 Conclusions and future trends -- Nomenclature -- References -- 8 Agro-food wastes: new sources of antioxidants -- 8.1 Introduction -- 8.2 Agro-food wastes -- 8.3 Antioxidants from agro-food wastes -- 8.3.1 Phenolic compounds -- 8.3.2 Lipids and vitamins -- 8.3.2.1 Terpenes -- 8.3.2.2 Carotenoids -- 8.3.2.3 Tocopherols -- 8.3.3 Proteins and peptides -- 8.4 Potential applications of antioxidants recovered from food waste and by-products -- 8.5 Conclusions and future trends -- Acknowledgments -- Nomenclature -- References -- 9 Membrane-based biorefinery in agro-food wastewater processing -- 9.1 Introduction -- 9.2 Recovery of added-value compounds from agro-food wastewaters -- 9.2.1 Licorice wastewaters -- 9.2.2 Artichoke wastewaters -- 9.2.3 Wine industry wastewaters -- 9.3 Conclusions and future trends -- Nomenclature.. - References -- 10 Pervaporation and membrane distillation technology in biorefinery -- 10.1 Principles of pervaporation technology -- 10.2 Pervaporation in biorefinery -- 10.3 Pervaporation applications in biorefinery -- 10.3.1 Pervaporation for bioalcohol recovery -- 10.3.2 Pervaporation for bioalcohol dehydration -- 10.3.3 Pervaporation in lignocellulosic biorefinery -- 10.4 Principles of membrane distillation technology -- 10.4.1 Direct contact membrane distillation -- 10.4.2 Air gap membrane distillation -- 10.4.3 Sweeping gas membrane distillation -- 10.4.4 Vacuum membrane distillation -- 10.5 Membrane distillation in bioethanol production -- 10.5.1 Membrane distillation bioreactor for bioethanol production -- 10.6 Conclusions and future trends -- Nomenclature -- References -- 11 Seafood processing by-products by membrane processes -- 11.1 Introduction -- 11.2 Seafood processing by-products and membrane technologies -- 11.3 Membrane processes and seafood protein hydrolysates -- 11.4 Membrane processes and fish oils and fatty acids -- 11.5 Membrane processes and chitooligosaccharides -- 11.6 Recovery of other valuable compounds (flavors, enzymes, pigments) from seafood processing wastewaters by membrane proc... -- 11.7 Conclusions and future trends -- Nomenclature -- References -- 12 Sustainable use of tomato pomace for the production of high added value food, feed, and nutraceutical products -- 12.1 Introduction -- 12.2 The flowchart of the production of tomato concentrates and tomato pomace -- 12.3 The chemical composition and the bioactivity of tomato pomace -- 12.3.1 Tomato pomace composition -- 12.3.2 The main nutritional constituents of tomato pomace -- 12.3.2.1 The lycopene and the other natural antioxidants of tomato pomace -- 12.3.2.2 The dietary fibers of tomato pomace -- 12.3.2.3 The protein content of tomato pomace.
Emner
Sjanger
Dewey
ISBN
0-323-88552-7

Bibliotek som har denne