Human interaction with electromagnetic fields : computational models in dosimetry /


Dragan Poljak, Mario Cvetković.
Bok Engelsk 2019 D. Poljak,· Electronic books.
Annen tittel
Utgitt
Academic Press
Omfang
1 online resource (1 volume) : : illustrations
Utgave
First edition.
Opplysninger
Front Cover -- Human Interaction with Electromagnetic Fields -- Copyright -- Contents -- About the authors -- Preface -- 1 On Exposure of Humans to Electromagnetic Fields - General Considerations -- 1.1 General Considerations -- 1.1.1 Environmental Electromagnetic Fields -- 1.1.1.1 Static Fields -- 1.1.1.2 Time-Varying Fields -- 1.1.2 Human Exposure to Undesired Radiation -- 1.1.3 Biomedical Applications of Electromagnetics Fields -- 1.2 Coupling Mechanisms and Biological Effects -- 1.2.1 Coupling to Static Fields -- 1.2.1.1 Coupling to Static Magnetic Fields -- 1.2.1.2 Coupling to Static Electric Fields -- 1.2.2 Coupling to Time-Varying Fields -- 1.2.2.1 Coupling to LF Electric Fields -- 1.2.2.2 Coupling to LF Magnetic Fields -- 1.2.2.3 Absorption of Energy From Electromagnetic Radiation -- 1.2.2.4 Indirect Coupling -- 1.2.3 Biological Effects -- 1.2.3.1 Biological Effects of Static Magnetic Fields -- 1.2.3.2 Biological Effects of LF Fields -- 1.2.3.3 Biological Effects of HF Radiation -- 1.2.3.4 Electromagnetic Fields and Cancer -- 1.3 Safety Guidelines and Exposure Limits -- 1.3.1 EMF Standards -- 1.3.2 ICNIRP Guidelines -- 1.3.3 IEEE Standards -- 1.3.4 Directive 2013/35/EU -- 1.4 A Note on Electromagnetic and Thermal Dosimetry -- 1.4.1 Exposure to LF Fields -- 1.4.2 Exposure to HF Fields -- 1.4.3 Exposure to Transients -- 1.4.4 Stochastic Modeling -- References -- 2 Theoretical Background: an Outline of Computational Electromagnetics (CEM) -- 2.1 Fundamentals of Computational Electromagnetics -- 2.1.1 An Outline of Classical Electromagnetic Field Theory -- 2.1.2 Maxwell's Equations - Differential and Integral Form -- 2.1.3 The Continuity Equation -- 2.1.4 Conservation of Electromagnetic Energy - Poynting Theorem -- 2.1.5 Electromagnetic Wave Equations -- 2.1.6 Electromagnetic Potentials -- 2.1.7 Plane Wave Propagation.. - 2.1.8 Radiation and Hertz Dipole -- 2.1.9 Fundamental Antenna Parameters -- 2.1.9.1 Radiation Power Density -- 2.1.9.2 Radiation Intensity -- 2.1.9.3 Directivity -- 2.1.9.4 Input Impedance, Radiation and Loss Resistance -- 2.1.9.5 Gain and Radiation Ef ciency -- 2.1.10 Dipole Antennas -- 2.1.11 Pocklington Integro-Differential Equation for a Straight Thin Wire -- 2.2 Introduction to Numerical Methods in Electromagnetics -- 2.2.1 Weighted Residual Approach -- 2.2.1.1 Fundamental Lemma of Variational Calculus -- 2.2.2 The Finite Element Method (FEM) -- 2.2.2.1 Basic Concepts of FEM -- 2.2.2.2 One-Dimensional FEM -- 2.2.2.3 Incorporation of Boundary Conditions -- 2.2.2.4 Computational Example: 1D Problem -- 2.2.2.5 Two-Dimensional FEM -- 2.2.2.6 The Weak Formulation for Generalized Helmholtz Equation -- 2.2.2.7 Computation of Fluxes on the Domain Boundary -- 2.2.2.8 Computation of Sources on a Finite Element -- 2.2.2.9 Three-Dimensional Elements -- 2.2.3 The Boundary Element Method (BEM) -- 2.2.3.1 Integral Equation Formulation -- 2.2.3.2 Boundary Element Discretization -- 2.2.3.3 Constant Boundary Elements -- 2.2.3.4 Linear and Quadratic Elements -- 2.2.4 Numerical Solution of Integral Equations Over Unknown Sources -- References -- 3 Incident Electromagnetic Field Dosimetry -- 3.1 Assessment of External Electric and Magnetic Fields at Low Frequencies -- 3.1.1 Fields Generated by Power Lines -- 3.1.1.1 The Electric Field -- 3.1.1.2 The Magnetic Field -- 3.1.2 Fields Generated by Substation Transformers -- 3.1.2.1 The Electric Field -- 3.1.2.2 The Magnetic Field -- 3.1.3 Assessment of Circular Current Density Induced in the Body -- 3.1.4 On the Basic Principles of Measurement of LF Fields -- 3.1.4.1 Measurement of LF Electric Fields -- 3.1.4.2 Measurement of LF Magnetic Fields -- 3.1.4.3 Comparison of Calculated and Experimental Results.. - 3.2 Assessment of High Frequency Electromagnetic Fields -- 3.2.1 Fields Radiated by Power Line Communication (PLC) Systems -- 3.2.2 Fields in the Vicinity of RFID Loop Antennas -- 3.2.3 Radiation From Base Station Antennas -- 3.2.3.1 Near Field Analysis: Assessment of Power Density -- 3.2.3.2 Far Field Analysis: Calculation of Power Density and Electric Field -- 3.2.3.3 Some Computational Examples -- 3.2.3.4 Some Measured Results -- 3.2.3.5 Far Field Analysis: Presence of a Lossy Ground and Layered Medium -- 3.2.3.6 Accurate Numerical Modeling of Radio Base Station Antenna Systems -- References -- 4 Simpli ed Models of the Human Body -- 4.1 Parallelepiped Model of the Human Body -- 4.2 Cylindrical Antenna Models of the Body -- 4.3 Cylindrical Models - Frequency Domain Analysis -- 4.3.1 Pocklington Equation Formulation for LF Exposures -- 4.3.2 Numerical Solution of the Pocklington Equation -- 4.3.3 Analytical Modeling of the Human Body - Hallén Equation for LF and HF Exposures -- 4.3.4 Multiple Wire Model of the Body -- 4.3.5 Numerical Solution Via Method of Moments (MoM) -- 4.3.6 Computational Examples -- 4.3.6.1 LF Exposures -- 4.3.6.2 HF Exposures -- 4.4 Time Domain Modeling - Exposure of Humans to Transient Radiation: Cylindrical Model of the Human Body -- 4.4.1 Time Domain Formulation -- 4.4.2 Numerical Solution of the Time Domain Hallén Integral Equation -- 4.4.3 Measures of the Transient Response -- 4.4.3.1 Average Value of the Transient Current -- 4.4.3.2 Root-Mean-Square Value of the Transient Current -- 4.4.3.3 Instantaneous Power -- 4.4.3.4 Total Absorbed Energy -- 4.4.3.5 The Speci c Absorption -- 4.4.4 Numerical Results -- 4.5 Transmission Line Models of the Human Body -- 4.5.1 Theoretical Background -- 4.5.2 Solution of the Transmission Line Equations in the Frequency Domain -- 4.5.3 Computational Examples.. - 4.5.3.1 Single Cylinder Model -- 4.5.3.2 Human Body With the Arms Outstretched -- 4.5.3.3 Human Exposure to High Frequency (HF) Radiation -- References -- 5 Realistic Models for Static and Low Frequency (LF) Dosimetry -- 5.1 Parameters for Quantifying LF Exposures -- 5.2 Human Head Exposed to Electrostatic Field -- 5.2.1 Finite Element Solution -- 5.2.2 Boundary Element Solution -- 5.2.3 Computational Examples -- 5.3 Whole Body Exposed to LF Fields -- 5.3.1 Quasi-Static Formulation -- 5.3.2 Multi-Domain Model of the Human Body -- 5.3.3 Realistic Model of the Human Body - No Arms -- 5.3.4 Realistic Model of the Human Body - Arms Included -- 5.3.5 Pregnant Woman/Fetus Exposed to ELF Electric Field -- References -- 6 Realistic Models for Human Exposure to High Frequency (HF) Radiation -- 6.1 Internal Electromagnetic Field Dosimetry Methods -- 6.1.1 Surface Integral Equation Formulation -- 6.1.1.1 Numerical Solution Using Method of Moments -- 6.1.2 Tensor Volume Integral Equation -- 6.1.2.1 Numerical Solution Using Method of Moments -- 6.1.3 Hybrid Finite Element/Boundary Element Approach -- 6.1.4 The Human Eye Exposure -- 6.1.4.1 Model of the Human Eye -- 6.1.4.2 Human Eye Exposed to Plane Wave -- 6.1.4.3 Compound Versus Extracted Eye Models -- 6.1.5 The Brain Exposure -- 6.1.5.1 Model of the Human Brain -- 6.1.5.2 Human Brain Exposed to Plane Wave -- 6.1.5.3 Child Brain Exposed to Plane Wave -- 6.1.6 The Human Head Exposure -- 6.1.6.1 Brain Dosimetry Comparison -- 6.1.7 The Whole Body Exposure -- 6.2 Thermal Dosimetry Procedures -- 6.2.1 Bioheat Transfer Equation -- 6.2.1.1 Heat Conduction Equation -- 6.2.1.2 Heat Conduction Equation -- 6.2.1.3 Convective Heat Transfer -- 6.2.1.4 Pennes' Equation -- 6.2.2 Finite Element Solution -- 6.2.3 Boundary Element Solution -- 6.2.4 Computational Examples.. - 6.2.4.1 Thermal Dosimetry for the Homogeneous Human Brain Model -- 6.2.4.2 Temperature Increase in the Human Eye -- 6.2.4.3 Temperature Rise in Compound and Extracted Eye Models -- 6.2.4.4 Thermal Response of the Human Body -- References -- 7 Biomedical Applications of Electromagnetic Fields -- 7.1 Transcranial Magnetic Stimulation (TMS) Treatment -- 7.1.1 Modeling TMS -- 7.1.1.1 Surface Integral Equation Based Formulation for TMS -- 7.1.2 Human Brain Models -- 7.1.2.1 TMS for Pediatric Population -- 7.1.2.2 Brain Tissue Parameters -- 7.1.3 Numerical Results -- 7.1.3.1 Electric Field Due to Various TMS Coils -- 7.1.3.2 Current Density -- 7.1.3.3 Magnetic Flux Density -- 7.1.3.4 Pediatric Models Using Adult Brain Parameters -- 7.1.3.5 Pediatric Models Using Age-Dependent Brain Parameters -- 7.2 Nerve Fiber Excitation -- 7.2.1 Nerve Fiber Models -- 7.2.1.1 Nerve Fiber Antenna Model -- 7.2.1.2 Numerical Solution -- 7.2.2 Passive Nerve Fiber -- 7.2.3 Active Nerve Fiber -- 7.2.4 Computational Examples -- 7.2.4.1 Numerical Results for Passive Nerve Fiber -- 7.2.4.2 Numerical Results for Active Nerve Fiber -- 7.3 Laser Radiation -- 7.3.1 Laser-Eye Interaction -- 7.3.2 Tissue Optical Parameters -- 7.3.3 Model of the Human Eye -- 7.3.4 Laser Source Modeling -- 7.3.5 Heat Transfer in the Human Eye -- 7.3.6 Numerical Solution of the Heat Transfer -- 7.3.7 Numerical Results -- 7.3.7.1 Steady-State Temperature Distribution -- 7.3.7.2 Nd:YAG 1064 nm Laser -- 7.3.7.3 Ho:YAG 2090 nm Laser -- 7.3.7.4 694.3 nm Ruby Laser -- 7.3.7.5 ArF 193 nm Excimer Laser -- 7.3.7.6 Nd:YLF 1053 nm Laser -- References -- A The Generalized Symmetric Form of Maxwell's Equations -- B A Note on Integral Equations -- C Scalar Green's Function and the Solution to Helmholtz Equation -- C.1 Scalar Green's Function -- C.2 Scalar Helmholtz Equation Solution -- References.. - D Derivation of EFIE From the Vector Analog of Green's Theorem.. - Human Interaction with Electromagnetic Fields: Computational Models in Dosimetry presents some highly rigorous and sophisticated integral equation techniques from computational electromagnetics (CEM), along with practical techniques for the calculation and measurement of internal dosimetry. Theory is accompanied by numerical modeling algorithms and illustrative computational examples that range from academic to full real-world scenarios. Covers both deterministic and stochastic modeling Presents implementations of integral equation approaches, overcoming the limitations of the FDTD approach Presents various biomedical applications
Emner
Sjanger
Dewey
ISBN
0-12-816624-X

Bibliotek som har denne