Solar Energy Engineering : Processes and Systems


Soteris A. Kalogirou
Bok Engelsk 2009 · Electronic books.
Utgitt
Burlington : : Elsevier Science, , 2009.
Omfang
1 online resource (779 p.)
Opplysninger
Description based upon print version of record.. - Front Cover; Solar Energy Engineering: Processes and Systems; Copyright Page; Contents; Preface; Chapter 1 Introduction; 1.1 General Introduction to Renewable Energy Technologies; 1.2 Energy Demand and Renewable Energy; 1.3 Energy-Related Environmental Problems; 1.3.1 Acid Rain; 1.3.2 Ozone Layer Depletion; 1.3.3 Global Climate Change; 1.3.4 Nuclear Energy; 1.3.5 Renewable Energy Technologies; 1.4 State of the Climate in 2005; 1.4.1 Global Temperature; 1.4.2 Carbon Dioxide; 1.4.3 Methane; 1.4.4 Carbon Monoxide; 1.4.5 Nitrous Oxide and Sulfur Hexafluoride; 1.4.6 Halocarbons; 1.4.7 Sea Level. - 1.5 Brief History of Solar Energy1.5.1 Photovoltaics; 1.5.2 Solar Desalination; 1.5.3 Solar Drying; 1.5.4 Passive Solar Buildings; 1.6 Other Renewable Energy Systems; 1.6.1 Wind Energy; 1.6.2 Biomass; 1.6.3 Geothermal Energy; 1.6.4 Hydrogen; 1.6.5 Ocean Energy; Exercise; References; Chapter 2 Environmental Characteristics; 2.1 Reckoning of Time; 2.1.1 Equation of Time; 2.1.2 Longitude Correction; 2.2 Solar Angles; 2.2.1 The Incidence Angle for Moving Surfaces; 2.2.2 Sun Path Diagrams; 2.2.3 Shadow Determination; 2.3 Solar Radiation; 2.3.1 General; 2.3.2 Thermal Radiation. - 2.3.3 Transparent Plates2.3.4 Radiation Exchange Between Surfaces; 2.3.5 Extraterrestrial Solar Radiation; 2.3.6 Atmospheric Attenuation; 2.3.7 Terrestrial Irradiation; 2.3.8 Total Radiation on Tilted Surfaces; 2.3.9 Solar Radiation Measuring Equipment; 2.4 The Solar Resource; 2.4.1 Typical Meteorological Year; 2.4.2 Typical Meteorological Year, Second Generation; Exercises; References; Chapter 3 Solar Energy Collectors; 3.1 Stationary Collectors; 3.1.1 Flat-Plate Collectors (FPCs); 3.1.2 Compound Parabolic Collectors (CPCs); 3.1.3 Evacuated Tube Collectors (ETCs). - 3.2 Sun-Tracking Concentrating Collectors3.2.1 Parabolic Trough Collectors (PTCs); 3.2.2 Fresnel Collectors; 3.2.3 Parabolic Dish Reflectors (PDRs); 3.2.4 Heliostat Field Collectors (HFCs); 3.3 Thermal Analysis of Flat-Plate Collectors; 3.3.1 Absorbed Solar Radiation; 3.3.2 Collector Energy Losses; 3.3.3 Temperature Distribution Between the Tubes and Collector Efficiency Factor; 3.3.4 Heat Removal Factor, Flow Factor, and Thermal Efficiency; 3.4 Thermal Analysis of Air Collectors; 3.5 Practical Considerations for Flat-Plate Collectors; 3.6 Concentrating Collectors. - 3.6.1 Optical Analysis of a Compound Parabolic Collector3.6.2 Thermal Analysis of Compound Parabolic Collectors; 3.6.3 Optical Analysis of Parabolic Trough Collectors; 3.6.4 Thermal Analysis of Parabolic Trough Collectors; 3.7 Second-Law Analysis; 3.7.1 Minimum Entropy Generation Rate; 3.7.2 Optimum Collector Temperature; 3.7.3 Non-Isothermal Collector; Exercises; References; Chapter 4 Performance of Solar Collectors; 4.1 Collector Thermal Efficiency; 4.1.1 Effect of Flow Rate; 4.1.2 Collectors in Series; 4.1.3 Standard Requirements; 4.2 Collector Incidence Angle Modifier. - 4.2.1 Flat-Plate Collectors. - As perhaps the most promising of all the renewable energy sources available today, solar energy is becoming increasingly important in the drive to achieve energy independence and climate balance. This new book is the masterwork from world-renowned expert Dr. Soteris Kalogirou, who has championed solar energy for decades. The book includes all areas of solar energy engineering, from the fundamentals to the highest level of current research. The author includes pivotal subjects such as solar collectors, solar water heating, solar space heating and cooling, industrial process heat, solar desalina
Emner
Sjanger
Dewey
ISBN
0123745012. - 9780123745019

Bibliotek som har denne