Experimental research methods in orthopedics and trauma


Hamish Simpson, DM (Oxon), MA (Cantab), FRCS (Edinburgh & England) Professor of Orthopedic Surgery Department of Orthopaedics and Trauma University of Edinburgh Edinburgh, United Kingdom, Peter Augat, PhD Professor of Biomechanics Paracelsus Medical University Salzburg, Austria Director Institute of Biomechanics Trauma Center Murnau Murnau am Staffelsee, Germany ; contributors, Rana Abou-Khalil [and ninety others].
Bok Engelsk 2015 A. Hamish R. W. Simpson,· Electronic books.
Utgitt
Stuttgart New York : Thieme , 2015
Omfang
1 online resource (466 p.)
Opplysninger
"257 illustrations.". - Experimental Research Methods in Orthopedics and Trauma; Title Page; Copyright; Contents; Foreword; Endorsement by the International Combined Orthopaedic Research Societies (I-CORS) Member Organizations; Preface; Acknowledgments; Contributors; 1 Why Do We Need Experimental Research?; 1 Evidence-Based Research; 2 Establishing a Basic Research Facility in Orthopedic Surgery; 3 Good Laboratory Practice and Quality Control; 4 How to Prepare for a Period in Research; 2 Structural Biomechanics; 5 Physiological Boundary Conditions for Mechanical Testing. - 20 Principles of Finite Elements Analysis21 Validation of Finite Element Models; 22 Computational Biomechanics of Bone; 23 Numerical Simulation of Implants and Prosthetic Devices; 24 Numerical Simulation of Fracture Healing and Bone Remodelling; 5 Imaging; 25 Micro-Computed Tomography Imaging of Bone Tissue; 26 Imaging Bone; 27 Ultrasound Techniques for Imaging Bone; 28 In Vivo Scanning; 29 Imaging of Cartilage Function; 30 Histochemistry Bone and Cartilage; 31 Immunohistochemistry; 32 Molecular Imaging In Situ Hybridization; 33 Laser Scanning Confocal Microscopy and Laser Microdissection. - 34 Image Analysis Histomorphometry Stereology6 Cellular Studies; 35 Cell Culture Research; 36 Cartilage Explants and Organ Culture Models; 37 Fluid Flow and Strain in Bone; 38 Biomechanics of Bone Cells; 7 Molecular Techniques in Bone Repair; 39 Molecular Testing; 40 Genetically Modified Models for Bone Repair; 8 In Vivo Models; 41 General Considerations for an In Vivo Model; 42 Animal Models for Bone Healing; 43 Models for Impaired Healing; 44 In Vivo Models for Bone and Joint Infections; 45 In Vivo Models for Articular Cartilage Repair; 46 In Vivo Soft Tissue Models; 9 Tissue Engineering. - 47 Scaffolds for Tissue Engineering and Materials for Repair48 Use of Growth Factors in Musculoskeletal Research; 49 Stem Cells for Musculoskeletal Repair; 50 Biological Evaluation and Testing of Medical Devices; 10 Statistics for Experimental Research; 51 Study Design; 52 Power and Sample Size Calculation; 53 Nonparametric versus Parametric Tests; 54 How to Limit Bias in Experimental Research; Index. - 6 Static, Dynamic, and Fatigue Mechanical Testing7 Use of Human and Animal Specimens in Biomechanical Testing; 8 Whole Bone Biomechanics; 9 Biomechanics of Trabecular and Cortical Bone; 10 Biomechanics of Fracture Fixation; 11 Biomechanical Assessment of Fracture Repair; 12 Biomechanics of Cartilage; 13 Biomechanics of Joints; 14 Spine Biomechanics; 3 Functional Biomechanics; 15 Musculokeletal Dynamics; 16 Measurement Techniques; 17 Clinical Assessment of Function; 18 Functional Biomechanics with Cadaver Specimens; 4 Numerical Biomechanics; 19 Inverse Dynamics. - From bioinformatics to nanotechnology, advances in basic research ultimately drive advances in clinical care. This book provides a comprehensive summary of all current research methodologies for translational and pre-clinical studies in biomechanics and orthopedic trauma surgery. With this roadmap at hand, specialists and trainees will have the tools to conduct high-quality experimental research in any area of musculoskeletal science, with a solid understanding of how the findings can be applied in patient care. Special Features: Utilizes the principles and methodology of modern, evidence-bas
Emner
Sjanger
Dewey
ISBN
9783131731111
ISBN(galt)

Bibliotek som har denne