Fundamentals of biomechanics : equilibrium, motion, and deformation


Nihat Özkaya, David Goldsheyder, Margareta Nordin ; project editor, Dawn Leger
Bok Engelsk 1991
Utgitt
New York : Van Nostrand Reinhold , c1991
Omfang
xv, 454 pages : : illustrations ;
Utgave
Fourth edition.
Opplysninger
1 Introduction -- 1.1. Mechanics -- 1.2 Biomechanics -- 1.3 Basic concepts -- 1.4 Newtons Laws -- 1.5 Dimensional analysis -- 1.6 Systems of units -- 1.7 Conversion of units -- 1.8 Mathematics -- 1.9 Scalars and vectors -- 1.10 Modeling and approximations -- 1.11 Generalized procedure -- 1.12 Scope of the text -- 1.13 Notation -- References, suggested reading, and other resources -- 2 Force vector -- 2.1 Definition of force -- 2.2 Properties of force as a vector quantity -- 2.3 Dimension and units of force -- 2.4 Force systems -- 2.5 External and internal forces -- 2.6 Normal and tangential forces -- 2.7 Tensile and compressive force -- 2.8 Coplanar forces -- 2.9 Collinear forces -- 2.10 Concurrent forces -- 2.11 Parallel force -- 2.12 Gravitational force or weight -- 2.13 Distributed force systems and pressure -- 2.14 Frictional forces -- 2.15 Exercise problems -- 3 Moment and torque vectors -- 3.1 Definitions of moment and torque vectors -- 3.2 Magnitude of moment-- 3.3 Direction of moment - 3.4 Dimension and units of moment -- 3.5 Some fine points about the moment vector -- 3.6 The net or resultant moment -- 3.7 The couple and couple-moment -- 3.8 Translation of forces -- 3.9 Moment as a vector product -- 3.10 Exercise problems -- 4 Statics: systems in equilibrium -- 4.1 Overview -- 4.2 Newtons Laws of mechanics -- 4.3 Conditions for equilibrium -- 4.4 Free-body diagrams -- 4.5 Procedure to analyze systems in equilibrium -- 4.6 Notes concerning the equilibrium equations -- 4.7 Constraints and reactions -- 4.8 Simply supported structures -- 4.9 Cable-pulley systems and traction devices -- 4.10 Built-in structures -- 4.11 Systems involving friction -- 4.12 Center of gravity determination -- 4.13 Exercise problems -- 5 Applications of statics to biomechanics -- 5.1 Skeletal joints -- 5.2 Skeletal muscles -- 5.3 Basic considerations -- 5.4 Basic assumptions and limitations -- 5.5 Mechanics of the elbow -- 5.6 Mechanics of the shoulder-- 5.7 Mechanics of the spinal column -- 5.8 Mechanics of the hip -- 5.9 Mechanics of the knee -- 5.10 Mechanics of the ankle -- 5.11 Exercise problems -- References -- 6 Introduction to dynamics -- 6.1 Dynamics -- 6.2 Kinematics and kinetics -- 6.3 Linear, angular and general motions -- 6.4 Distance and displacement -- 6.5 Speed and velocity -- 6.6 Acceleration -- 6.7 Inertia and momentum -- 6.8 Degree of freedom -- 6.9 Particle concept -- 6.10 Reference frames and coordinate systems -- 6.11 Prerequisites for dynamic analysis -- 6.12 Topics to be covered -- 7 Linear kinetics -- 7.1 Uniaxial motion -- 7.2 Position, displacement, velocity, and acceleration -- 7.3 Dimensions and units -- 7.4 Measured and derived quantities -- 7.5 Uniaxial motion with constant acceleration -- 7.6 Examples of uniaxial motion -- 7.7 Biaxial motion -- 7.8 Position, velocity, and acceleration vectors -- 7.9 Biaxial motion with constant acceleration -- 7.10 Projectile motion -- 7.11 Applications to athletics-- 7.12 Exercise problems -- 8 Linear kinetics -- 8.1 Overview -- 8.2 Equations of motion -- 8.3 Special cases of translational motion -- 8.3.1 Force is constant -- 8.3.2 Force is a function of time -- 8.3.3 Force is a function of displacement -- 8.4 Procedure for problem solving in kinetics -- 8.5 Work and energy methods -- 8.6 Mechanical work -- 8.6.1 Work done by a constant force -- 8.6.2 Work done by a varying force -- 8.6.3 Work as a scalar product -- 8.7 Mechanical energy -- 8.7.1 Potential energy -- 8.7.2 Kinetic energy -- 8.8 Work-energy theorem -- 8.9 Conservation of energy principle -- 8.10 Dimension and units of work and energy -- 8.11 Power -- 8.12 Applications of energy methods -- 8.13 Exercise problems -- 9 Angular kinematics -- 9.1 Polar coordinates -- 9.2 Angular position and displacement -- 9.3 Angular velocity -- 9.4 Angular acceleration -- 9.5 Dimensions and units -- 9.6 Definitions of basic concepts -- 9.7 Rotational motion about a fixed axis-- 9.8 Relationships between linear and angular quantities -- 9.9 Uniform circular motion -- 9.10 Rotational motion with constant acceleration -- 9.11 Relative motion -- 9.12 Linkage systems -- 9.13 Exercise problems -- 10 Angular kinetics -- 10.1 Kinetics of angular motion -- 10.2 Torque and angular acceleration -- 10.3 Mass moments of inertia -- 10.4 Parallel-axis theorem -- 10.5 Radius of gyration -- 10.6 Segmental motion analysis -- 10.7 Rotational kinetic energy -- 10.8 angular work and power -- 10.9 Exercise problems -- 11 Impulse and momentum -- 11.1 Introduction -- 11.2 Linear momentum and impulse-momentum method -- 11.3 Application of the impulse-momentum method -- 11.4 Conservation of linear momentum -- 11.5 Impact and collisions -- 11.6 One-dimensional collisions -- 11.6.1 Perfectly inelastic collision -- 11.6.2 Perfectly elastic collision -- 11.6.3 Elastoplastic collision -- 11.7 Two-dimensional collisions -- 11.8 Angular impulse and momentum-- 11.9 Summary of basic equations -- 11.10 Kinetics of rigid bodies in plane motion -- 11.11 Exercise problems -- 12 Introduction to deformable body mechanics -- 12.1 Overview -- 12.2 Applied forces and deformations -- 12.3 Internal forces and moments -- 12.4 Stress and strain -- 12.5 General procedure -- 12.6 Mathematics involved -- 12.7 Topics to be covered -- Suggested reading -- 13 Stress and strain -- 13.1 Basic loading configurations -- 13.2 Uniaxial tension test -- 13.3 Load-elongation diagrams -- 13.4 Simple stress -- 13.5 Simple strain -- 13.6 Stress-strain diagrams -- 13.7 Elastic deformations -- 13.8 Hookes Law -- 13.9 Plastic deformations -- 13.10 Necking -- 13.11 Work and strain energy -- 13.12 Strain hardening -- 13.13 Hysteresis loop -- 13.14 Properties based of stress-strain diagrams -- 13.15 Idealized models of material behavior -- 13.16 Mechanical properties of materials -- 13.17 Example problems -- 13.18 Exercise problems-- 14 Multiaxial deformations and stress analysis -- 14.1 Poissons ratio -- 14.2 Biaxial and triaxial stresses -- 14.3 Stress transformation -- 14.4 Principal stresses -- 14.5 Mohrs circle -- 14.6 Failure theories -- 14.7 Allowable stress and factor of safety -- 14.8 Factors affecting the strength of materials -- 14.9 Fatigue and endurance -- 14.10 Stress concentration -- 14.11 Torsion -- 14.12 Bending -- 14.13 Combined loading -- 14.14 Exercise problems -- 15 Mechanical properties of biological tissues -- 15.1 Viscoelasticity -- 15.2 Analogies based on springs and dashpots -- 15.3 Empirical models of viscoelasticity -- 15.3.1 Kelvin-Voight model -- 15.3.2 Maxwell model -- 15.3.3 Standard solid model -- 15.4 Time-dependent material response -- 15.5 Comparison of elasticity and viscoelasticity -- 15.6 Common characteristics of biological tissues -- 15.7 Biomechanics of bone -- 15.7.1 Composition of bone -- 15.7.2 Mechanical properties of bone -- 15.7.3 Structural integrity of bone-- 15.7.4 Bone fractures -- 15.8 Tendons and ligaments -- 15.9 Skeletal muscles -- 15.10 Articular cartilage -- 15.11 Discussion -- 15.12 Exercise problems -- Appendix A: Plane geometry -- A.1 Angles -- A.2 Triangles -- A.3 Law of Sines -- A.4 Law of Cosine -- A.5 The right triangle -- A.6 Pythagorean theorem -- A.7 Sine, Cosine, and Tangent -- A.8 Inverse Sine, Cosine, ad Tangents -- A.9 Exercise problems -- Appendix B: Vector algebra -- B.1 Definitions -- B.2 Notation -- B.3 Multiplication of a vector by a scalar -- B.4 Negative vector -- B.5 Addition of vectors : graphical methods -- B.6 Subtraction of vectors -- B.7 Addition of more than two vectors -- B.8 Projection of vectors -- B.9 Resolution of vectors -- B.10 Unit vectors - B.11 Rectangular coordinates -- B.12 Addition of vectors : trigonometric method -- B.13 Three-dimensional components of vectors -- B.14 Dot (scalar) product of vectors -- B.15 Cross (vector) product of vectors -- B.16 Exercise problems-- Appendix C: Calculus -- C.1. Functions -- C.1.1 Constant functions -- C.1.2 Power functions -- C.1.3 Linear functions -- C.1.4 Quadratic functions -- C.1.5 Polynomial functions -- C.1.6 Trigonometric functions -- C.1.7 Exponential and logarithmic functions -- C.2 The derivative -- C.2.1 Derivatives of basic functions -- C.2.2 The constant multiple rule -- C.2.3 The sum rule -- C.2.4 The product rule -- C.2.5 The quotient rule --C.2.6 The chain rule -- C.2.7 Implicit differentiation -- C.2.8 Higher derivatives -- C.3 The integral -- C.3.1 Properties of indefinite integrals -- C.3.2. Properties of definite integrals -- C.3.3 Methods of integration -- C.4 Trigonometric identities -- C.5 The quadratic formula -- C.6 Exercise problems -- Index. - "This textbook integrates the classic fields of mechanics-statics, dynamics, and strength of materials-using examples from biology and medicine. The book is excellent for teaching either undergraduates in biomedical engineering programs or health care professionals studying biomechanics at the graduate level. Extensively revised from a successful third edition, Fundamentals of Biomechanics features a wealth of clear illustrations, numerous worked examples, and many problem sets. The book provides the quantitative perspective missing from more descriptive texts, without requiring an advanced background in mathematics. It will be welcomed for use in courses such as biomechanics and orthopedics, rehabilitation and industrial engineering, and occupational or sports medicine. --- This book: * Introduces the fundamental concepts, principles, and methods that must be understood to begin the study of biomechanics * Reinforces basic principles of biomechanics with repetitive exercises in class and homework assignments given throughout the textbook * Includes over 100 new problem sets with solutions and illustrations" --- from back of book
Emner
Dewey
ISBN
0442003137

Bibliotek som har denne